Anchor Protocol Smart
Contracts - Audit Report

March 8, 2021

This audit has been performed by

Philip Stanislaus and Stefan Beyer

Cryptonics Consulting S.L.
Ramiro de Maeztu 7

46022 Valencia

SPAIN

https://cryptonics.consulting/



https://cryptonics.consulting/

@ Cryptonics

Table of Contents

Table of Contents 2
Disclaimer 4
Introduction 5
Purpose of this Report 5
Codebase Submitted for the Audit 5
Methodology 6
Functionality Overview 6
How to read this Report 7
Summary of Findings 8
Code Quality Criteria 9
Detailed Findings 10
Ethereum Smart Contracts 10
AnchorEthFactory.sol: Storage Initialization breaks Upgradability Pattern 10
AnchorEthFactory.sol: Migration to new contract will work only once and fail, if too

many AnchorAccount contracts deployed 10
CosmWasm anchor-bAsset-contracts Smart Contracts 12

handle_update_global swaps rewards from account that has not withdrawn rewards 12
Coins other than the configured stable coin might be lost 12

query_get_finished_amount may include not yet released amounts from undelegation

13
handle_deregister_validator can panic if the last validator is deregistered 13
handle_deregister_validator will revert if total_balance is zero 13

Changing the underlying coin denom of the hub will result in unbondable tokens 14

Overflow checks not set for profile release in all packages 14
history.withdraw_rate is used inconsistently 15
Unbond history read twice 15
Unnecessary duplicate slashing function call 15



@ Cryptonics

Not implemented msg UpdateUserIlndex described in README.md 16
CosmWasm money-market-contracts Smart Contracts 17

sub and add functions for tokens don’t handle multiple tokens with the same address

properly 17
Undercollateralized loans cannot be liquidated 18
Coins other than the configured stable coin might be lost 18
Interest not computed before reserve factor is updated 18
After market contract initialization, anyone can set the overseer contract 19
Interest not compounding between messages 19

Overflow checks not set for profile release in packages/moneymarket/Cargo.toml 20



@ Cryptonics

Disclaimer

THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT
REPRESENTATIONS AND WARRANTIES OF ANY KIND.

THE AUTHORS AND THEIR EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING
OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT IS NOT A SECURITY WARRANTY, INVESTMENT ADVICE, OR AN
ENDORSEMENT OF THE CLIENT OR ITS PRODUCTS. THIS AUDIT DOES NOT PROVIDE A
SECURITY OR CORRECTNESS GUARANTEE OF THE AUDITED SOFTWARE



@ Cryptonics

Introduction

Purpose of this Report

Cryptonics Consulting has been engaged by Terraform Labs to perform a security audit of the
Anchor Protocol smart contracts. This current audit report covers the implementation of the
CosmWasm smart contract and the Ethereum smart contracts of the Anchor protocol
architecture.

The objectives of the audit are as follows:

1. Determine the correct functioning of the system, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.
3. Determine smart contract bugs, which might lead to unexpected behavior.
4. Analyze whether best practices have been applied during development.
5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit

The audit has been performed on the code submitted in the following GitHub repositories:

https://github.com/Anchor-Protocol/anchor-eth-contracts/tree/development

Commitno: 91£0c0326c510da40853f3ae1d1349ba8d224b7f

https://github.com/Anchor-Protocol/anchor-bAsset-contracts

Commitno: 75£0e9dd856858679a00d7ae090975caf6dld4cH

https://github.com/Anchor-Protocol/money-market-contracts

Commitno: 04b685a80c68548b03cel5c62f£719032950d99a


https://github.com/Anchor-Protocol/anchor-eth-contracts/tree/development
https://github.com/Anchor-Protocol/anchor-bAsset-contracts
https://github.com/Anchor-Protocol/money-market-contracts

@ Cryptonics

Methodology

The audit has been performed by a mixed team of smart contract and full-stack auditors.
The following steps were performed:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.

3. Manual line by line analysis of the source code for security vulnerabilities and use of
best practice guidelines, including but not limited to:

a. Race condition analysis
b. Under-/ overflow issues
c. Key management vulnerabilities
d. Permissioning issues
e. Logic errors
4. Report preparation

The results were then discussed between the auditors in a consensus meeting and integrated
into this joint report.

Functionality Overview

The submitted code implements the smart contracts for the Anchor protocol, a DeFi savings
protocol on the Terra blockchain.

The protocol consists of a liquidity-pool based lending protocol, that allows liquidity providers
to earn yields on a number of assets.



@ Cryptonics

How to read this Report

This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not
strictly necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, or Resolved.
Informational notes do not have a status, since we consider them optional recommendations.

Note, that audits are an important step to improve the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
for each module, in the corresponding findings section.

Note, that high complexity or lower test coverage does not necessarily equate to a higher
risk, although certain bugs are more easily detected in unit testing than a security audit and
vice versa.



@ Cryptonics

Summary of Findings

The Anchor smart contracts were found to contain 2 critical issues, 2 major issues, 7 minor
issues and 6 informational notes:

No Description Severity Status

Ethereum Smart Contracts

1 AnchorEthFactory.sol: Storage Initialization Critical Resolved
breaks Upgradability Pattern

2 AnchorEthFactory.sol: Migration to new Major Resolved
contract will work only once and fail, if too many
AnchorAccount contracts deployed

CosmWasm anchor-bAsset-contracts Smart Contracts

3 Coins other than the configured stable coin might Acknowledged
be lost
4 query get finished amount may include Acknowledged

not yet released amounts from undelegation

5 handle deregister validator can panic if Resolved
the last validator is deregistered

6 handle deregister validator will revert if Resolved
total balance is zero

7 Changing the underlying coin denom of the hub Resolved
will result in unbondable tokens

8 Overflow checks not set for profile release in all Informational Resolved
packages

9 history.withdraw rate isused inconsistently Informational Resolved

10 Unnecessary duplicate slashing function call Informational Resolved



@ Cryptonics

CosmWasm money-market-contracts Smart Contracts

1

12

13

14

15

16

17

sub and add functions for tokens don’t handle
multiple tokens with the same address properly

Undercollateralized loans cannot be liquidated

Coins other than the configured stable coin might
be lost

Interest not computed before reserve factor is
updated

After market contract initialization, anyone can set
the overseer contract

Interest not compounding between messages

Overflow checks not set for profile release in
packages/moneymarket/Cargo.toml

Code Quality Criteria

Criteria Status

Code complexity

Code readability and clarity

Level of Documentation

Test Coverage

Critical

Major

Informational

Informational

Informational

Comment

Resolved

Resolved

Acknowledged

Resolved

Acknowledged

Acknowledged

Resolved



@ Cryptonics

Detailed Findings

Ethereum Smart Contracts

1. AnchorEthFactory. sol: Storage Initialization breaks
Upgradability Pattern

Severity: Critical

The function migrate () suggests that this contract should be upgradable and deployed
through Open Zeppelin’s implementation of the proxy pattern. However, this framework
requires storage not to be initialized through static assignment or through the constructor.
Instead, the contract should inherit from OZ’s Initializable contract and implement an
initialize () function to set global storage variables in the proxy’s context. The current
implementation fails to initialize the terrausd and achorust variables.

Recommendation

Refactor the contract according to the method described in:
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

Status: Resolved

2. AnchorEthFactory. sol: Migration to new contract will work
only once and fail, if too many AnchorAccount contracts deployed

The function migrate () allows the privileged owner of the factory contract to migrate
ownership of all AnchorAccount wallet contracts to a new address. This is meant to be
used if the smart contract is upgraded using Open Zeppelin’s implementation of the proxy
pattern. However, the function introduces two important limitations:

- Migration will only work once, since the isMigrated variable will already be true
after the first migration. Note, that in the proxy upgradability pattern, the context of
storage is the actual proxy contract, meaning that the value of isMigrated will be
maintained.

- The migrate () function iterates over the ContractsList array. This means that
once this array grows too big the function invocation will hit the block gas limit,
causing the transaction to revert.

Recommendation

10


https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable

@ Cryptonics

Consider revising the migration process not to rely on the i sMigrated variable.
Furthermore, it is advisable to refactor the migration process to allow migrating wallets in
batches (for example by 100 contracts at a time by index range).

Status: Resolved

11



@ Cryptonics

CosmWasm anchor-bAsset-contracts Smart
Contracts

3. Coins other than the configured stable coin might be lost

In several places in the codebase, sent funds are filtered by the configured stable
denomination, but any other coins sent are not returned to the sender. That leaves those
other coins frozen to the contract. Those places are:
contracts/anchor basset hub/src/bond.rs:33,
contracts/anchor basset hub/src/contract.rs:38

Recommendation

We recommend either returning unused coins or reverting the transaction if unexpected coins
are sent.

Status: Acknowledged

12



@ Cryptonics

4. query get finished amount may include not yet released
amounts from undelegation

In query get finished amount in

contracts/anchor basset hub/src/state.rs:219, no check is made whether the
amount has been released yet. If the target block is after the latest released block, the
returned amount will be bigger than what can actually be withdrawn.

Recommendation

As doneinget finished amount, we recommend adding a check for the released
status of the batch.

Status: Acknowledged

query get finished amount acceptsablock time argumentthat might be after
currently released batches, the logic would need to calculate the released status of all
batches at that time.

5. handle deregister_ validator can panic if the last validator
is deregistered

In contracts/anchor basset hub/src/config.rs:258, no check is made whether
the validator set is not empty, in which case unwrap leads to a panic.

Recommendation

We recommend to either prevent deregistering the last validator before line 258 or handling
delegated funds from that last validator differently.

Status: Resolved

6. handle deregister validator will revert if
total balance is zero

In contracts/anchor basset reward/src/global.rs:65, an error is returned if
total balance is zero. That leads handle deregister validator to revert,
implying that validators cannot be deregistered until the balance is getting positive.

13



@ Cryptonics

Recommendation
We recommend to allow deregistering even if the total balance is zero.

Status: Resolved

7. Changing the underlying coin denom of the hub will result in
unbondable tokens

The permissioned function chandle update params in
contracts/anchor basset hub/src/config.rs:36, allows a change of the
underlying coin denom. Since that variable is used during unbonding of tokens, a
change of the value will leave any bonded tokens locked without any possibility to unbond.

Recommendation

This issue is relatively minor, since the handle update params call is permissioned.
However, since access to bonded tokens could be lost, we still recommend implementing
either a check that fails the function call if there are still bonded tokens or an automatic
unbonding.

Status: Resolved

8. Overflow checks not set for profile release in all packages

Severity: Informational

Currently, only the workspace cargo.toml enables overflow-checks for the release
profile, while the individual packages have not enabled release overflow checks.

Recommendation

While this check is implicitly applied to all packages from the workspace cargo.toml, we
recommend also explicitly enabling overflow checks in every individual package. That helps
when the project is refactored to prevent unintended consequences. This recommendation is
already implemented in money-market-contracts, with one exception (see below).

Status: Resolved

14



@ Cryptonics

9. history.withdraw_rate is used inconsistently

Severity: Informational

history.withdraw rate is used for two purposes: a) to store the historical exchange
rate, which is used to convert bAssets to assets and b) to store the slashing rate, which is
used to convert burned funds to unbonded funds. While this might make sense for efficiency,

it will be confusing to users and the unbonding history loses information about the exchange
rate after releasing the unbonded funds.

Recommendation

We recommend separating the exchange rate and slashing rate into distinct fields.

Status: Resolved

A new field applied_exchange_rate has been added to the state, which will allow external
users to query the used exchange rate before the slashing.

10. Unnecessary duplicate slashing function call

Severity: Informational

In contracts/anchor basset hub/src/bond.rs:41-42, the function slashingis
called twice. This is not necessary.

Recommendation

We recommend removing the duplicate function call.

Status: Resolved

15



@ Cryptonics

CosmWasm money-market-contracts Smart
Contracts

1". sub and add functions for tokens don’t handle multiple tokens
with the same address properly

Severity: Critical

The add and sub functions defined in packages/moneymarket/src/tokens.rs:27
and 61 do not handle multiple tokens with the same address in either self or the tokens
argument properly.

In the add function, if there are more entries with the same addresses in self or tokens,
the additional entries are skipped and the sum will be too small.

In the sub function, if there are more entries with the same addresses in tokens, the
additional entries will be skipped, i. e. too little is subtracted. If there are more entries with the
same addresses in sel f, the additional entries will be skipped, which is not an issue.

An example where this can be exploited is in unlock collateral in
contracts/overseer/src/collateral.rs:78. An attacker can exploit this issue by
submitting multiple entries with the same address in collaterals human. The code only
subtracts the value of the first of those entries from the stored collaterals and stores those
collaterals again, but proceeds to unlock all requested collaterals from
collaterals human.

Likewise, lock collateral in contracts/overseer/src/collateral.rs:21 is
affected by this issue. In this case, collateral will be locked but not added to the user’s
collateral store, so the user can never unlock those collaterals again.

Recommendation

We recommend adding a check to the add and sub functions to return an error if multiple
entries with the same address are encountered, or alternatively apply the calculation such
that the result considers all entries.

Status: Resolved

16



@ Cryptonics

12. Undercollateralized loans cannot be liquidated

Severity: Major

During the query liquidation amount function in
contracts/liquidation/src/contract.rs:262, an erroris returned if the expected
repay amount from a liquidation is not high enough to fully cover the borrowed amount. While
that might make sense in cases where prices temporarily dip, it implies that loans might not
even be partially liquidated and might lose even more value in a market collapse.

Recommendation

To prevent a black swan event where lenders lose all their value, we recommend
implementing partial liquidation or even a default of loans.

Status: Resolved

13. Coins other than the configured stable coin might be lost

In several places in the codebase, sent funds are filtered by the configured stable
denomination, but any other coins sent are not returned to the sender. That leaves those
other coins frozen to the contract. Those places are:
contracts/market/src/contract.rs:31,
contracts/market/src/borrow.rs:104,
contracts/market/src/deposit.rs:20,
contracts/liquidation/src/bid.rs:35

Recommendation

We recommend either returning unused coins or reverting the transaction if unexpected coins
are sent.

Status: Acknowledged

14. Interest not computed before reserve factor is updated

Before the reserve factor is updated in contracts/market/src/contract.rs:209,
compute interest is not called. That will lead to the new reserve factor being applied to
the interest accumulated until the time of execution, rather than just to future interest.

17



@ Cryptonics

Recommendation

As done in line 202 when updating the interest model, we recommend calling
compute interest before updating the reserve factor.

Status: Resolved

15. After market contract initialization, anyone can set the overseer
contract

Severity: Informational

During the init function of the market contract in
contracts/market/src/contract.rs:26, the overseer contract variable is
assigned to CanonicalAddr::default (). After that initialization, anyone can send the
RegisterOverseer message, since there is no permission check in the
register overseer contract handler.

Recommendation

Since there is an initial deposit at stake, we recommend adding permissioning to the
register overseer contract handlerforthe RegisterOverseer message.

Status: Acknowledged

Contract deployment is done in a script and can be verified after deployment.

16. Interest not compounding between messages

Severity: Informational
compute interest raw uses a simple linear interest formula rather than compounding
the interest accumulated between function calls. That opens a way for rational lenders to

increase their interest rate by regularly sending a borrow/repay/deposit/redeem message
which updates the interest rate, which in turn triggers compounding more often.

18



@ Cryptonics

Recommendation

While not a security concern, the current implementation leads to an undefined annualized
percentage vyield (APY). That APY depends on the number of calls to the
compute interest raw function. While this linear interest model might be a deliberate
business decision, a compounding implementation could be preferable. For reference, see
Maker's implementation and docs.

Status: Acknowledged

The current implementation is a conscious design decision by the Anchor team to simplify the
design.

17. Overflow checks not set for profile release in
packages/moneymarket/Cargo. toml

Severity: Informational

While set in all other packages, packages/moneymarket/Cargo.toml does not enable
overflow-checks for the release profile.

Recommendation

While this check is implicitly applied to all packages from the workspace cargo.toml, we
recommend also explicitly enabling overflow checks in every individual package. That helps
when the project is refactored to prevent unintended consequences.

Status: Resolved

19


https://github.com/makerdao/dss/blob/c103b3077d080ff7db4b5b03df2b2a0116783936/src/pot.sol#L142-L149
https://github.com/makerdao/developerguides/blob/master/mcd/intro-rate-mechanism/intro-rate-mechanism.md

